A Framework to Analyze Biclustering Results on Microarray Experiments
نویسندگان
چکیده
Microarray technology produces large amounts of information to be manipulated by analysis methods, such as biclustering algorithms, to extract new knowledge. All-purpose multivariate data visualization tools are usually not enough for studying microarray experiments. Additionally, clustering tools do not provide means of simultaneous visualization of all the biclusters obtained. We present an interactive tool that integrates traditional visualization techniques with others related to bioinformatics, such as transcription regulatory networks and microarray heatmaps, to provide enhanced understanding of the biclustering results. Our aim is to gain insight about the structure of biological data and the behavior of different biclustering algorithms.
منابع مشابه
به کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملA Biclustering Based Classification Framework for Cancer Diagnosis and Prognosis
In gene expression microarray data analysis, biclustering has been demonstrated to be one of the most effective methods for discovering gene expression patterns under various conditions. We present in this study a framework to take advantage of the homogeneously expressed genes in biclusters to construct a classifier for sample class membership prediction. Extensive experiments on 8 real cancer...
متن کاملQuery-based Biclustering using Formal Concept Analysis
Biclustering methods have proven to be critical tools in the exploratory analysis of high-dimensional data including information networks, microarray experiments, and bag of words data. However, most biclustering methods fail to answer specific questions of interest and do not incorporate prior knowledge and expertise from the user. To this end, query-based biclustering algorithms that are rece...
متن کاملUse of biclustering for missing value imputation in gene expression data
DNA microarray data always contains missing values. As subsequent analysis such as biclustering can only be applied on complete data, these missing values have to be imputed before any biclusters can be detected. Existing imputation methods exploit coherence among expression values in the microarray data. In view that biclustering attempts to find correlated expression values within the data, w...
متن کاملBiclustering with Background Knowledge using Formal Concept Analysis
Biclustering methods have proven to be critical tools in the exploratory analysis of high-dimensional data including information networks, microarray experiments, and bag of words data. However, most biclustering methods fail to answer specific questions of interest and do not incorporate background knowledge and expertise from the user. To this end, query-based biclustering algorithms have bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007